BackgroundThis study explores the value of interlobar fissure semilunar sign(IFSS) based on multifactor joint analysis in predicting the invasiveness of ground glass nodules(GGNs) with interlobar fissure attachment in the lungs.MethodsThis was a retrospective analysis of clinical data and CT images of 203 GGNs attached to the interlobar fissures confirmed by surgery and pathology. According to pathological results, those GGNs were divided into three groups: glandular precursor lesion (atypical adenomatous hyperplasia/adenocarcinoma in situ), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IAC). Various quantitative and qualitative parameters were analyzed.ResultsPatient age, maximum diameter, mean size, maximum CT value, and mean CT value differed significantly among the three groups and between with the other group (P < 0.05). The types of GGNs, IFSS, lobulation, spiculation, cavity sign, air bronchogram sign, bronchial changes, and vascular changes had varying degrees of significance in the comparison of each group of lesions. Logistic regression analysis showed that IFSS is one of the important factors in predicting whether GGN is invasive. The regression model I was Logit (P) 1 = -3.578 + 0.272 × 2 + 2.253 × 5, with the area under curve (AUC) for diagnosis of MIA = 0.762. Model III was Logit (P) 3 = -4.494 + 0.376 × 2 + 2.363 × 5, with the AUC for diagnosis of MIA/IAC = 0.881. The sensitivity and specificity of IFSS in model III were 0.961 and 0.458, respectively.ConclusionsThe absence of IFSS in GGNs attached to the interlobar fissure suggests noninvasive lesions. The logistic regression model based on multi factor joint analysis IFSS and maximum diameter can better predict whether the GGN attached to the interlobar fissure pleura is invasive.
Read full abstract