The adoption of no-till management practices has increased in the United States over the last decade. In the state of North Dakota, approximately 5.7 million hectares of cropland is managed under no-till or conservation tillage management practices. Even though conservation tillage is known for building soil health, increasing soil organic matter, capturing soil moisture, and reducing wind and water erosion, it also presents a unique best management practice since an increased mass of crop residue remains on the soil surface. Producers are concerned about whether plant needs are being met by nitrogen fertilizer that is currently being applied based on current North Dakota recommendations for long-term no-till systems. A Forman clay loam soil (fine-loamy, mixed, superactive, frigid Calcic Argiudolls) was used in this study, as it represented glacial till soils of the region. We examined whether N mineralization from surface-applied crop residue would result in similar or different results when compared to crop residue mixed into the soil. Soil freeze-thaw contribution to soil N mineralization was also evaluated. Six residue treatments with different C/N ratios including corn (Zea mays L.), soybean (Glycine max L.), forage radish (Raphanus sativus L.), winter pea (Pisum sativum L.), spring wheat (Triticum aestivum L.), and winter wheat (Triticum aestivum L.) were used. Five 10–14-week cycles with a three-week freeze period between each cycle at 0 ºC were evaluated for NO3-N production. Crop residues with a narrow C/N ratio contributed to greater instances of N mineralization during each incubation cycle, and the accumulation of crop residues with a wide C/N ratio over each incubation cycle following the first incubation did not offset the immobilization trends observed in the first incubation. A change in N mineralized in the untreated control soil during the last two incubation cycles may have been caused by freeze-thaw effects or a shift in microbial population due to a lack of fresh C inputs.