Anderson-Fabry disease (FD) is an X-linked lysosomal storage disorder caused by a pathological variant of the α-galactosidase A (GLA) gene that results in deficient GLA activity. GLA deficiency leads to the accumulation of globotriaosylceramide (Gb3) and lyso-Gb3 in many tissues. A certain number of FD patients have burning pain or acroparesthesia in the feet and hands since childhood. Enzyme replacement therapy (ERT) is available for FD patients. However, ERT does not dramatically improve these FD-related peripheral neuropathic pain. We generated an adeno-associated virus serotype PHP.eB (AAV-PHP.eB) vector encoding mouse GLA cDNA, which was administered to FD mice intrathecally (it) or intravenously (iv). In the it-administered AAV (it-AAV) FD mice, the GLA enzyme activity in the lumbar dorsal root ganglion (DRG) was significantly greater than that in the untreated (NT) FD mice, and the level of activity was similar to that in wild-type (WT) B6 mice. However, in iv-administered AAV (iv-AAV) FD mice, GLA activity in the DRG did not increase compared to that in NT FD mice. Gb3 storage in the DRG of it-AAV FD mice was reduced compared to that in the DRG of NT FD mice. However, compared with NT FD mice, iv-AAV FD mice did not exhibit a significant reduction in the expression of the Gb3 substrate. Compared with WT mice, FD mice were thermally hyposensitive at 52 °C according to the hot plate test. The it-AAV FD mice showed significant recovery from thermal hyposensitivity. However, the iv-AAV FD mice did not exhibit significant improvement in thermal hyposensitivity. These results suggest that the intrathecal delivery of AAV-PHP.eB-mGLA may be a valuable tool for the treatment of FD-related peripheral neuropathic pain.
Read full abstract