Colonic motility is regulated by various factors along the gut-brain axis; however, detailed mechanisms are unknown. This study aimed to examine the involvement of the autonomic nervous system in colonic motility. Suncus murinus (suncus) is a small laboratory mammal suitable for gastrointestinal motility studies. Colonic motility and concomitant feeding and defecation behaviors in vagotomized and reserpine-administered suncus were recorded simultaneously for 24 h. Furthermore, we performed immunohistochemistry on tyrosine hydroxylase (TH) and insitu hybridization on corticotropin-releasing hormone (CRH) in suncus brain. Additionally, we examined c-Fos expression in the brain using immunohistochemistry in conscious suncus with colorectal distension. In vagotomized suncus, clustered giant migrating contractions (GMCs), consisting of strong contractions occurring in a short time, were observed, and the percentage of GMCs without defecation increased. The frequency of GMCs in the reserpine-administered suncus increased during a light period (ZT0-4, 4-8) and decreased during a dark period (ZT16-20, 20-24) compared to a vehicle group. Additionally, the percentage of GMCs without defecation in the reserpine-administered suncus increased. Suncus TH-immunopositive neurons were found in the locus coeruleus (LC), as shown in rodents. In contrast, CRH mRNA-expressing cells were not observed in a region assumed to be the Barrington's nucleus (Bar). Furthermore, colorectal distension in conscious suncus induced c-Fos expression in LC TH neurons. Our results suggest that the vagus and sympathetic nerves are not required for induction of GMCs invivo. However, they are likely to exert a modulatory role in control of GMC frequency in Suncus murinus.
Read full abstract