Maize (Zea mays L.) is one of the most widely cultivated crops for humans, making a vital contribution to human nutrition and health. However, in recent years, due to the influence of external adverse environments, the yield and quality of maize have been seriously affected. NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are important plant-unique TFs, which are crucial for regulating the abiotic stress response of plants. Therefore, it is of great biological significance to explore the underlying regulatory function of plant NAC TFs under various abiotic stresses. In this study, wild-type and ZmNAC074-overexpressed transgenic Arabidopsis were used as experimental materials to dissect the stress-resistant function of ZmNAC074 in transgenic Arabidopsis at phenotypic, physiological and molecular levels. The analyses of seed germination rate, survival rate, phenotype, the content of chlorophyll, carotenoids, malondialdehyde (MDA), proline and other physiological indexes induced by distinct abiotic stress conditions showed that overexpression of ZmNAC074 could confer the enhanced resistance of salt, drought, and endoplasmic reticulum (ER) stress in transgenic Arabidopsis, indicating that ZmNAC074 plays an important regulatory role in plant response to abiotic stress, which provides an important theoretical foundation for further uncovering the molecular regulation mechanism of ZmNAC074 under abiotic stresses.
Read full abstract