The quantitative analysis of rock mass damage is crucial in fields such as engineering geology, disaster prevention, mining, geotechnical engineering, and structural engineering. With the advancement and application of noncontact measurement technologies and fractal theory, image-based damage identification methods are gaining increasing importance. This paper presents an optimized binarization algorithm for identifying and characterizing damage zones in granite explosion images. The method involves filtering, mathematical morphology operations, and connectivity recognition to effectively remove background noise while preserving clear boundaries of the damaged areas. It accurately captures the explosion damage in granite, both in terms of damage morphology and characteristic parameters. Additionally, the coefficient of agreement (COA) is introduced to quantitatively assess the accuracy of different methods in identifying damaged areas. The experimental results show that, compared with commonly used methods such as Otsu's method, Bernsen's algorithm, Niblack's algorithm, Sauvola's algorithm, and the K-means image clustering algorithm, the proposed method performs better in terms of identification accuracy and parameter agreement, achieving COA values near 1 across diverse experimental environments. Furthermore, the proposed method excels in handling uneven lighting, mitigating interference from rock surface textures and explosion carbonization zones, and demonstrates significant robustness in complex scenarios. The findings of this paper provide insights into the integration of engineering geology and computer vision technology. They offer valuable references for damage identification in excavation damage zones (EDZs), geological disaster evaluation, and structural damage warning systems.
Read full abstract