AbstractThis work aims to synthesize new foaming laterite geopolymer foam using laterite, sodium silicate solution, sand, and aluminium powder. The porosity rapidly increased with the addition of the foaming agent. The foam matrix had thermal conductivity values of 0.10 W/m K with 0.7% of Al powder and 0.64 W/m K with 0% of Al powder. For fire resistance, samples exposed to high temperatures (200°C and 500°C) showed increased flexural strength, linear shrinkage at 500°C, and a decrease at 900°C due to structural weakening under high thermal pressure and the appearance of new phases such as nepheline and akermanite in X‐ray diffraction analysis. The results also showed that a 30% increase in fine aggregate content increased the strength of the foam matrix, with flexural strength ranging from 5 to 9.1 MPa after 28 days of ambient curing. These laterite geopolymer foams have shown promising thermal insulation and mechanical qualities that are appropriate for building applications.