In the diffraction pattern produced by a half-plane sharp edge when it obstructs the passage of a laser beam, two characteristic regions are noticeable. There is a central region, where it can be noticed the diffraction of laser light in the region of geometric shadow, while intensity oscillations are observed in the non-obstructed area. On both sides of the edge, there are also very long light traces along the normal to the edge of the obstacle. The theoretical explanation to this phenomenon is based on the Fresnel-Kirchhoff diffraction theory applied to the Gaussian beam propagation behind the obstacle. Here we have supplemented this explanation by considering electromagnetic flow lines, which provide a more complete interpretation of the phenomenon in terms of electric and magnetic fields and flux lines, and that can be related, at the same time, with average photon paths.