This study focuses on the analysis of extractives from the wood of Balanites aegyptiaca, an endemic and iconic species of dry African regions, and the impact of climatic and geographical conditions on these extractives. The wood samples were collected from three distinct geographical zones: the Sahelian Chadian zone, the Sudanian Chadian zone, and the Sahelian Senegalese zone. A total of nine trees were analyzed in this study. The results showed that samples from the Sahelian Chadian zone, characterized by more arid conditions, had a significantly higher extractive content compared to those from the other two regions. The extractive compounds characteristic of these samples included stereoisomers of inositol, pinnitol, diosgenin, and sesquiterpenes. These compounds were found to be identical in samples from the Sahelian Senegalese and Sudanian Chadian zones, except for disaccharides, which were additionally present in the Senegalese samples. For the same species, pinnitol remained the most dominant compound in the wood from the Sahelian Chadian zone, alongside monosaccharides. This marked difference in extractive compounds is explained as a response of the tree to local constraints, particularly water stress and high temperatures, which stimulate the production of secondary metabolites such as tannins, polysaccharides, and pinnitol. These compounds are essential for the tree's resistance to unfavorable environmental conditions. The study highlights the influence of climatic factors on the biosynthesis of secondary compounds and suggests that Balanites aegyptiaca could offer promising opportunities for pharmacological and industrial applications.
Read full abstract