Typical optical sensors based on D-shape fibers use standard step-index single-mode fibers (SMF) with a circular core. Multi-mode fibers, fibers with elliptical or rectangular cores, and photonic crystal fibers (PCF) are also used to achieve the best possible sensor performance. However, since the presented sensors differ not only in geometry but, most importantly, in the materials and core sizes, it is difficult to compare their properties directly. In this paper, we numerically analyzed the influence of the shape and size of the core on the sensing performance, with all other relevant parameters being equal. Full Text: PDF References D. Jauregui-Vazquez, J. P. Korterik, C. E. Osornio-Martinez, J. M. Estudillo-Ayala, H. L. Offerhaus, J. A. Alvarez-Chavez, "A strain reflection-based fiber optic sensor using thin core and standard single-mode fibers", Opt. Comm. 522, 128659 (2022). CrossRef H. H. Liu, D. J. Hu, Q. Z. Sun, L. Wei, K. W. Li, C. Liao, B. Li, C. Zhao, X. Dong, Y. Tang, Y. Xiao, G. Keiser, P. Shum, "Specialty optical fibers for advanced sensing applications", Opto-Electron Sci. 2(2), 220025 (2023). CrossRef K. Gasior, T. Martynkien, P. Mergo, W. Urbanczyk, "Fiber-optic surface plasmon resonance sensor based on spectral phase shift interferometric measurements", Sensors and Actuators B: Chemical 257, 602 (2018). CrossRef Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, H. Li, "Recent research progress of optical fiber sensors based on D-shaped structure", Opt. & Laser Techn. 90, 149 (2017). CrossRef J. Homola, Surface Plasmon Resonance Based Sensors (Berlin, Springer 2006). CrossRef K. Gasior, T. Martynkien., M. Napiorkowski, K. Zolnacz, P. Mergo, W. Urbanczyk, "A surface plasmon resonance sensor based on a single mode D-shape polymer optical fiber", J. Opt. 19, 025001 (2017). CrossRef Q. Wang, W. M. Zhao, "A comprehensive review of lossy mode resonance-based fiber optic sensors", Opt. Lasers in Engineering 100, 47 (2018). CrossRef K. Gasior, T. Martynkien, G. Wojcik, P. Mergo, W. Urbanczyk, "D-shape polymer optical fibres for surface plasmon resonance sensing", Opto-Electron. Rev. 24(4), 209 (2016). CrossRef G. Stepniewski, A. Filipkowski, D. Pysz, J. Warszewski, R. Buczynski, M. Smietana, R. Kasztelanic, "From D-shaped to D-shape optical fiber – A universal solution for sensing and biosensing applications: Drawn D-shape fiber and its sensing applications", Measurement 222, 113642 (2023). CrossRef R. Kasztelanic, H. T. Nguyen, D. Pysz, H. Thienpont, T. Omatsu, R. Buczynski, "Free-Form Optical Fiber with a Square Mode and Top-HatIntensity Distribution", Adv. Science 11, 2402886 (2024). CrossRef J.W. Fleming, "Dispersion in GeO2-SiO2 glasses", Appl. Opt. 23, 4486-4493 (1984). CrossRef T.A. König, P.A. Ledin, J. Kerszulis, M.A. Mahmoud, M.A. El-Sayed, J.R. Reynolds, V.V. Tsukruk., "Electrically Tunable Plasmonic Behavior of Nanocube–Polymer Nanomaterials Induced by a Redox-Active Electrochromic Polymer", ACS Nano 8, 6182-6192 (2014). CrossRef I.Z. Kozma, P. Krok, E. Riedle, "Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet", J. Opt. Soc. Am. B 22, 1479-1485 (2005). CrossRef