In contrast to acid mine drainage, the microbial assembly and (bio)geochemical processes in alkaline mine conditions remain under-investigated. Here, microbe-water-mineral interactions were systematically investigated in two representative iron mines with alkaline conditions in the Panxi mining area, Southwest China. Compared to reference riverine samples less interfered by mining activities, the iron ore samples, composed of vanadium-titanium magnetite and pyroxene-rich bedrocks, exhibited elevated levels of Fe, HCl-extractable Fe(II), total sulfur, nitrate and sulfate, but lower total carbon (TC). Meanwhile, the mine drainage showed significantly higher sulfate, but lower TC concentrations than the riverine samples. Intriguingly, the Serpentinimonas spp., typically reported in serpentinites, prevailed in the microbial communities from the mine samples exhibiting higher pH. This suggests that the alkaline environments in Panxi mines result from serpentinization-like reactions. Enrichment of Thiobacillus spp. was observed in the mine-dwelling microbial communities, positively correlated with total sulfur, sulfate, nitrate, and Fe(II). Genome-resolved metagenomics suggested a chemoautotrophic lifestyle for the Thiobacillus species (e.g., carbon fixation, sulfur oxidation, and oxygen respiration), which may generate H+ and mitigate alkalization. This study provides valuable insights into progressive development of alkaline mine ecosystems and offers guidance for developing appropriate engineering strategies to restore the abandoned alkaline mines.
Read full abstract