BX795 is an emerging drug candidate that has shown a lot of promise as a next-generation non-nucleoside antiviral agent for the topical treatment of herpes simplex virus type-1 (HSV-1) and herpes simplex virus type-2 (HSV-2) infections. Our studies indicated that BX795 has limited oral bioavailability, which could be attributed to its low and pH-dependent solubility. Lipid-based formulations such as self-nanoemulsifying systems (SNESs) can improve the solubility and oral bioavailability of BX795, but the poor lipid solubility of BX795 further limits the development of SNES. To improve the loading of BX795 into SNES, we evaluated the ability of various bulky and biocompatible anions to transform BX795 into an ionic liquid (IL) with higher lipid solubility. Our studies showed that sodium lauryl sulfate and docusate sodium were able to transform BX795 into IL. Compared to pure BX795, the developed BX795 ILs showed differential in vitro cytocompatibility to HeLa cells but exhibited similar in vitro antiviral activity against HSV-2. Interestingly, BX795 docusate (BX795-Doc), an IL of BX795 with ∼135-fold higher lipid solubility than pure BX795, could be successfully incorporated into an SNES, and the developed BX795-Doc-SNES could readily form nanoemulsions of size ≤200 nm irrespective of the pH of the buffer used for dilution. Our in vitro studies showed that BX795-Doc-SNES retained the inherent antiviral activity against HSV-2 and showed similar in vitro cytocompatibility, indicating the availability of BX795 from the SNES in vitro. Finally, orally delivered SNES containing BX795-Doc showed a significant reduction in HSV-2 infection in mice compared to the untreated control. Thus, the transformation of BX795 into IL and the subsequent incorporation of the BX795 IL into the SNES are an effective strategy to improve oral therapy of genital herpes infection.
Read full abstract