Purpose Black gram (Vigna mungo [L.] Hepper) is an important annual legume with great economic, nutritional and ecological significance. Novel variations through induced mutagenesis can accelerate narrow genetic base-impeded black gram improvement. This is a first study on characterization of genome-wide mutation spectrum induced by electron beam (EB). Materials and methods Black gram genotype ‘Pant U-31’ was irradiated with 400 Gy EB generated in a 10 MeV LINAC. A stable mutant PM-32 (M6) was re-sequenced by combining Illumina (BIOO Scientific, Inc., Austin, TX) and Nanopore Technologies (Oxford, UK). Variants were predicted in reference to the available whole genome scaffold level draft assembly of parent ‘Pant U-31’. Results Genome analysis predicted a total of 76,893 genes of which 58,517 were annotated. The identified variants totaling 728,161, largely comprised (91.56%) of single base substitutions (SBSs) with a transition (Ti) to transversion (Tv) ratio of 1.95. Of the indels constituting 8.44% of total induced variants, insertions accounted for 4.29%, with preponderance of multiple bases (53.63%) and 2–5 bp insertions as the major class (33.71%). Multiple-base deletions (2–5 bases) formed the bulk (31.14%) of the total deletions. The genic variants (2438) with estimated high and moderate effects were located within 1271 predicted genes. A higher number of mutations were observed on chromosomes Vm1 (588) and Vm3 (428) with the highest frequency on chromosome Vm3 (every 0.07 Mb). Conclusions Our study reiterated the mutagenic utility of EB for inducing SBSs and small indels genome-wide. The knowledge gained from SNP-level profiling of EB-induced mutations can expedite comparative mutation breeding studies in legumes.
Read full abstract