Alzheimer's is one of the fast-growing diseases among people worldwide leading to brain atrophy. Neuroimaging reveals extensive information about the brain's anatomy and enables the identification of diagnostic features. Artificial intelligence (AI) in neuroimaging has the potential to significantly enhance the treatment process for Alzheimer's disease (AD). The objective of this study is two-fold: (1) to compare existing Machine Learning (ML) algorithms for the classification of AD. (2) To propose an effective ensemble-based model for the same and to perform its comparative analysis. In this study, data from the Alzheimer's Diseases Neuroimaging Initiative (ADNI), an online repository, is utilized for experimentation consisting of 2125 neuroimages of Alzheimer's disease (n = 975), mild cognitive impairment (n = 538) and cognitive normal (n = 612). For classification, the framework incorporates a Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (K-NN) followed by some variations of Support Vector Machine (SVM), such as SVM (RBF kernel), SVM (Polynomial Kernel), and SVM (Sigmoid kernel), as well as Gradient Boost (GB), Extreme Gradient Boosting (XGB) and Multi-layer Perceptron Neural Network (MLP-NN). Afterwards, an Ensemble Based Generic Kernel is presented where Master-Slave architecture is combined to attain better performance. The proposed model is an ensemble of Extreme Gradient Boosting, Decision Tree and SVM_Polynomial kernel (XGB + DT + SVM). At last, the proposed method is evaluated using cross-validation using statistical techniques along with other ML models. The presented ensemble model (XGB + DT + SVM) outperformed existing state-of-the-art algorithms with an accuracy of 89.77%. The efficiency of all the models was optimized using Grid-based tuning, and the results obtained after such process showed significant improvement. XGB + DT + SVM with optimized parameters outperformed all other models with an efficiency of 95.75%. The implication of the proposed ensemble-based learning approach clearly shows the best results compared to other ML models. This experimental comparative analysis improved understanding of the above-defined methods and enhanced their scope and significance in the early detection of Alzheimer's disease.