The steady-state degree of a chemical reaction network is the number of complex steady-states for generic rate constants and initial conditions. One way to bound the steady-state degree is through the mixed volume of an associated steady-state system. In this work, we show that for partitionable binomial chemical reaction systems, whose resulting steady-state systems are given by a set of binomials and a set of linear (not necessarily binomial) conservation equations, computing the mixed volume is equivalent to finding the volume of a single mixed cell that is the translate of a parallelotope. Additionally, we give a coloring condition on cycle networks to identify reaction systems with binomial steady-state ideals. We highlight both of these theorems using a class of networks referred to as species-overlapping networks and give a formula for the mixed volume of these networks.
Read full abstract