AbstractOrganometallic reagents are routinely used as fundamental building blocks in organic chemistry to rapidly diversify molecular fragments via carbanion intermediates. However, the catalytic generation of carbanion equivalents, particularly from sp3-hybridized alkyl scaffolds, remains an underdeveloped goal in chemical synthesis. Here we disclose an approach for the generation of alkyl carbanions via single-electron reduction of aryl alkenes, enabled by multi-photon photoredox catalysis. We demonstrate that photocatalytically induced alkyl carbanions engage in intermolecular C–C bond-forming reactions with carbonyl electrophiles. Central to this method is the controlled formation of an alkene distonic radical anion intermediate that undergoes nucleophilic addition, followed by a kinetically favoured reductive polar crossover to produce a second carbanion available for further diversification. The versatility of this protocol was illustrated by the development of four distinct intermolecular C–C bond-forming reactions with aromatic alkenes (hydroalkoxylation, hydroamidation, aminoalkylation and carboxyaminoalkylation) to generate a range of valuable and complex scaffolds.