Previously we showed that the tensor product of a weight module over a generalized Weyl algebra (GWA) with a weight module over another GWA is a weight module over a third GWA. In this paper we compute tensor products of simple and indecomposable weight modules over generalized Weyl algebras supported on a finite orbit. This allows us to give a complete presentation by generators and relations of the Grothendieck ring of the categories of weight modules over a tower of generalized Weyl algebras in this setting. We also obtain partial results about the split Grothendieck ring. We described the case of infinite orbits in previous work.
Read full abstract