Generalized power sums are linear combinations of ith powers of coordinates. We consider subalgebras of the polynomial algebra generated by generalized power sums, and study when such algebras are Cohen–Macaulay. It turns out that the Cohen–Macaulay property of such algebras is rare, and tends to be related to quantum integrability and representation theory of Cherednik algebras. Using representation theoretic results and deformation theory, we establish Cohen–Macaulayness of the algebra of q, t-deformed power sums defined by Sergeev and Veselov, and of some generalizations of this algebra, proving a conjecture of Brookner, Corwin, Etingof, and Sam. We also apply representation-theoretic techniques to studying m-quasi-invariants of deformed Calogero–Moser systems. In an appendix to this paper, M. Feigin uses representation theory of Cherednik algebras to compute Hilbert series for such quasi-invariants, and show that in the case of one light particle, the ring of quasi-invariants is Gorenstein.
Read full abstract