This paper deals with the radar target detecting problem in nonzero-mean compound Gaussian sea clutter with random texture. The texture is considered to be an inverse Gamma, Gamma, or inverse Gaussian variable. Three novel adaptive detectors using the two-step maximum a posteriori (MAP) generalized likelihood ratio test (GLRT) are proposed. More precisely, we derive the test statistics of the proposed detectors for known mean vector (MV) and speckle covariance matrix (CM) in the first step. In the second step, unbiased and consistent estimators are proposed to estimate the MV and CM in nonzero-mean compound Gaussian circumstances. We acquire the fully adaptive nonzero-mean GLRT detectors by substituting the estimates into the test statistics. Then, the constant false alarm rate (CFAR) properties of the proposed detectors with respect to (w.r.t.) the speckle CM are proved. Finally, the performance of three proposed detectors is verified by simulation experiments using the synthetic and real sea clutter data.
Read full abstract