In the present paper, we investigate totally real submanifolds in generalized complex space form. We study the [Formula: see text]-structure in the normal bundle of a totally real submanifold and derive some integral formulas computing the Laplacian of the square of the second fundamental form and using these formulas, we prove a pinching theorem. In fact, the purpose of this note is to generalize results proved in B. Y. Chen and K. Ogiue, On totally real manifolds, Trans. Amer. Math. Soc. 193 (1974) 257–266, S. S. Chern, M. Do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional Analysis and Related Fields (Springer-Verlag, 1970), pp. 57–75 to the case, when the ambient manifold is generalized complex space form.
Read full abstract