In this study, we investigate the potential existence of a non-minimal coupling between dark matter and gravity using a compilation of galaxy clusters. We focus on the disformal scenario of a non-minimal model with an associated coupling length L. Within the Newtonian approximation, this model introduces a modification to the Poisson equation, characterized by a term proportional to L2∇2ρ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2 \ abla ^2 \\rho $$\\end{document}, where ρ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho $$\\end{document} represents the density of the DM field. We have tested the model by examining strong and weak gravitational lensing data available for a selection of 19 high-mass galaxy clusters observed by the CLASH survey. We have employed a Markov Chain Monte Carlo code to explore the parameter space, and two different statistical approaches to analyse our results: a standard marginalisation and a profile distribution method. Notably, the profile distribution analysis helps out to bypass some volume-effects in the posterior distribution, and reveals lower Navarro–Frenk–White concentrations and masses in the non-minimal coupling model compared to general relativity case. We also found a nearly perfect correlation between the coupling constant L and the standard Navarro–Frenk–White scale parameter rs\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$r_s$$\\end{document}, hinting at a compelling link between these two lengths.