Background & AimsHepatitis B virus (HBV)-DNA integration into the host genome contributes to hepatocellular carcinoma (HCC) development. KMT2B is the second most frequent locus of HBV-DNA integration in HCC, however its role and function remain unclear. We aimed to clarify the impact of HBV-KMT2B integration in HCC development using a human genome-edited induced pluripotent stem cells (iPSCs) model. MethodsBased on the genetic information on HBV-KMT2B integration in HCC, we determined its complete DNA sequence and transcript variants. To exclude the effect of other oncogenic mutations, we reproduced HBV integration in healthy donor iPSCs with an intact genome and analyzed its effects using iPSC-derived hepatic progenitor cells (HPCs) and hepatocytes (iPS-Heps). ResultsThe reproduced HBV-KMT2B integration significantly upregulated the proliferation of hepatic cells. Comprehensive transcriptional and epigenetic analyses revealed enhanced expression of cell cycle-related genes in hepatic cells with HBV-KMT2B integration based on perturbation of histone 3 lysine 4 tri-methylation(H3K4me3), mimicking that in the original HCC sample. Long-read RNA-sequence detected the common KMT2B transcript variants in the HCC sample and HPCs. Overexpression of the truncated variant significantly enhanced proliferation of hepatic cells, whereas HBV-KMT2B fusion transcripts did not enhance proliferation. HBV-KMT2B-integrated HPCs exhibited replication stress and DNA damage, indicating that our model initiated the process of hepatocarcinogenesis due to abnormally promoted KMT2B function. ConclusionsOur disease model using genetically engineered iPSCs provides the first insight into both the KMT2B function in HCC development and the oncogenic processes by HBV-KMT2B integration. We clarified the novel oncogenic mechanism in HBV-related HCC due to aberrant KMT2B function.
Read full abstract