Background/Objectives: Bacterial wilt disease is a soil-borne disease caused by Ralstonia solanacearum that causes huge losses to crop economies worldwide. Methods: In this work, strain MLY102 was isolated and further identified as R. solanacearum from a diseased tobacco stalk. The genomic properties of MLY102 were explored by performing biochemical characterization, genome sequencing, compositional analysis, functional annotation and comparative genomic analysis. Results: MLY102 had a pinkish-red color in the center of the colony surrounded by a milky-white liquid with fluidity on TTC medium. The biochemical results revealed that MLY102 can utilize carbon sources, including D-glucose (dGLU), cane sugar (SAC) and D-trehalose dihydrate (dTRE). Genome sequencing through the DNBSEQ and PacBio platforms revealed a genome size of 5.72 Mb with a G+C content of 67.59%. The genome consists of a circular chromosome and a circular giant plasmid with 5283 protein-coding genes. A comparison of the genomes revealed that MLY102 is closely related to GMI1000 and CMR15 but has 498 special genes and 13 homologous genes in the species-specific gene family, indicating a high degree of genomic uniqueness. Conclusions: The unique characteristics and genomic data of MLY102 can provide important reference values for the prevention and control of bacterial wilt disease.
Read full abstract