A potent stimulation of fibroblast collagen production is one of the crucial pleotropic effects of transforming growth factor β (TGF-β) and has been considered to play a crucial role in the pathogenesis of fibrotic diseases including Systemic Sclerosis and Pulmonary Fibrosis. This complex process involves numerous intracellular reactions mediated by canonical Smad-dependent or non-canonical pathways that transduce the extracellular stimuli into the nucleus. Here, we demonstrated that Simvastatin, a widely used statin, induces a potent inhibition of TGF-β1 profibrotic effects in cultured normal human dermal fibroblasts, and studied the molecular mechanisms involved in these effects. We also examined Simvastatin modulation of TGF-β1 induced fibroblast to myofibroblast transition. Normal human dermal fibroblasts were cultured with various concentrations of Simvastatin in the presence or absence of TGF-β1 (10ng/ml) for 24, 48, and 72 h. The effects of Simvastatin on TGF-β1 stimulation of COL1A1 expression and type 1 collagen production were examined. Assessment of Smad2/3 and Erk1/2 phosphorylation, chromatin immunoprecipitation assays for Sp1 transcription factor binding to the COL1A1 proximal promoter, siRNA-mediated RhoA knockdown, and F-actin immunofluorescence microscopy was performed to examine the molecular mechanisms involved.
Read full abstract