Land alkalization is an abiotic stress that affects global sustainable agricultural development and the balance of natural ecosystems. In this study, two broomcorn millet cultivars, T289 (alkaline-tolerant) and S223 (alkaline-sensitive), were selected to investigate the response of broomcorn millet to alkaline stress and the role of brassinolide (BR) in alkaline tolerance. Phenotypes, physiologies, and transcriptomes of T289 and S223 plants under only alkaline stress (AS) and alkaline stress with BR (AB) were compared. The results showed that alkaline stress inhibited growth, promoted the accumulation of soluble sugars and malondialdehyde, enhanced electrolyte leakage, and destroyed the integrity of broomcorn millet stomata. In contrast, BR lessened the negative effects of alkaline stress on plants. Transcriptome sequencing analysis showed that relative to control groups (CK, nutrient solution), in AS groups, 21,113 and 12,151 differentially expressed genes (DEGs) were identified in S223 and T289, respectively. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed various terms and pathways related to metabolism. Compared to S223, alkaline stress strongly activated the brassinosteroid biosynthesis pathway in T289. Conversely, ARF, TF, and TCH4, associated with cell growth and elongation, were inhibited by alkaline stress in S223. Moreover, alkaline stress induced the activation of the mitogen-activated protein kinase (MAPK) pathway, the abscisic acid signaling pathway that initiates stomatal closure, as well as the starch and sucrose metabolism. The EG and BGL genes, which are associated with cellulose degradation, were notably activated. BR enhanced alkaline tolerance, thereby alleviating the transcriptional responses of the two cultivars. Cultivar T289 is better in alkalized regions. Taken together, these results reveal how broomcorn millet responds to alkaline stress and BR mitigates alkaline stress, thus promoting agriculture in alkalized regions.