The functional properties of food products, in addition to enrichment with functional components, can also be achieved by reducing the content of certain components such as sugars and fats, that is, by reducing the energy content of the product. Thus, the development of functional food products is aimed at various low-energy products, especially products with a reduced fat content, which normally represent the most concentrated source of energy. Fat replacers should simulate the functional properties of the fat. Polysaccharide-based fat replacers include a variety of native starches, modified starches, maltodextrins, cellulose and cellulose derivatives, polydextrose, inulin, pectin, other dietary fibers, and hydrocolloids. Technological properties required for the application of carbohydrate-based fat replacers are water-holding capacity, a certain level of viscosity, required form and particle size, three-dimensional networking and gel-forming ability, sensory abilities such as spreadability, softness, greasiness feeling in the mouth, and other fat-like properties. These fat replacers are usually applied in combinations with the aim of achieving all desired properties normally provided by fats in foods. In the contemporary literature, there are many examples of their application in different food products, including baked goods, meats, dairy products, and emulsion food systems, successfully reducing the fat content with or without minor alterations in the rheology or sensory features of food products. In summary, polysaccharides-based fat replacers offer an effective method for fat reduction in different food products along with enhancing the health benefits of reduced-fat foods.
Read full abstract