The objective of this paper is to present a numerical approach to investigate the formation mechanism of tooth surface waviness in CGG of electric vehicle gears while independently analyzing each influencing factor and ignoring the mutual influences between them. A tooth surface waviness simulation model is proposed considering the system vibration and tool wear. According to the characterization of grinding worm wear and the main shaft vibration in CGG, the grinding worm wheel and the grinding trajectories are modeled. Based on the analysis of the geometric contact characterizations through the whole grinding process, tooth surface topography is modeled, and tooth surface waviness is extracted. By comparing the tooth surface waviness in the frequency domain, the influence of grinding worm local wear, global wear, and the main shaft vibrations on tooth surface waviness is studied. Local wear and global wear affect tooth surface waviness differently by changing the amplitude and the distribution pattern of the frequencies. The main shaft vibrations have limited direct impacts on the amplitude in profile and flank spectrums, among which the vibration Z plays a leading role.
Read full abstract