Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Al and Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> (Al,Ge) tapes with excellent superconducting properties were fabricated by the laser beam irradiation method. Nb-25 at %Al and Nb-20 at % Al-5 at % Ge tapes were prepared by the powder metallurgy process. Continuous CO <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> laser beam irradiation was carried out on the tape surface in an argon gas atmosphere at 1-13m/min, velocities. Beam power was 0.3-4kW and beam diameter at the tape surface was 0.5-3mm. As the power density was high and irradiation time was short, the tape could be heated and cooled much faster than a tape that was heat treated by the conventional method. The results were fine grain structure and large J <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> values at high magnetic fields. T <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> for an as-irradiated tape was 16-18K. This T <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> increased by ∼2K by the subsequent annealings at 700°C for 100 hours. The maximum T <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> (onset) values obtained were 18.6K for the Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Al tape and 20.1K for the Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> (Al,Ge) tape, which indicated that stoichiometric compounds could be formed by laser beam irradiation. Annealed tapes, after the irradiation, showed excellent J <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> values, especially at high magnetic fields. J <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> values over 2×10 <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</inf> A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 23 Tesla were obtained for both Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Al and Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> (Al,Ge) tapes. These values are much larger than those obtained by conventional heat treatment. J <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> values of as-irradiated tapes at high fields were smaller than those for annealed tapes, due to the lower T <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> and, hence, lower H <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c2</inf> . The large J <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</inf> values, as well as easy scale-up procedure, indicate that the laser irradiation method is promising for the fabrication of advanced superconductors, e.g. Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> Al and Nb <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</inf> (Al,Ge) capable of generating fields over 20 Tesla.