Irradiation can accurately manipulate defects and adjust pinning landscapes within REBa2Cu3O7-δ (REBCO, RE: rare earths) coated conductors (CCs). This study reports a productive method to dramatically boost the in-field critical current density (Jc) for GdBCO CCs using cooperative irradiation with Ti ions and protons. Remarkably, the in-field Jc of commercial CCs can be almost doubled at a wide range of temperatures and magnetic fields. Defects of various sizes induced by cooperative irradiation are more uniform distribution through the entire GdBCO film to improve the vortex pinning characteristics, thereby enhancing the in-field performance of the GdBCO CC. This method highlights how combining different particle irradiation types can tailor defect size and distribution, optimizing pinning landscapes for commercial REBCO CCs.
Read full abstract