BackgroundGlioblastoma (GBM) poses formidable challenges due to its high malignancy and therapeutic resistance and still exhibits dismal 5-year survival rates, high recurrence propensity, and limited treatment modalities. There is an acute need for innovative treatments for recurrent glioblastoma due to the lack of established protocols. This necessity is driving research into the cellular underpinnings that initiate and drive the disease forward, aiming to discover groundbreaking targets for therapy that could enhance the efficacy of medical interventions. MethodsPatient-derived glioblastoma stem cells (GSCs) were harvested and isolated. Subsequently, PDCD6 expression was quantified through both western blotting (WB) and real-time PCR (RT-PCR) techniques. The stem-like properties of the GSCs were evaluated using sphere-forming assays. All gathered data, inclusive of TCGA datasets, were analyzed using SPSS (IBM) version 23.0. ResultsElevated PDCD6 expression characterized classical GBM tumor tissues. PDCD6 overexpression significantly correlated with diminished overall survival in GBM patients, emerging as an independent prognostic indicator. Notably, primary GBM cells exhibited heightened PDCD6 levels in GSCs compared to NSTCs. Moreover, alterations in stemness markers paralleled PDCD6 modulation, where PDCD6 knockdown attenuated tumor size in GSCs. ConclusionOur findings illuminate PDCD6's role in fostering stemness within classical GBM, hinting at its potential as a therapeutic target.
Read full abstract