Let q ∈ Z [ i ] q \in \mathbb {Z} [i] be prime, and let χ \chi be the primitive quadratic Hecke character modulo q q . Let π \pi be a self-dual Hecke automorphic cusp form for S L 3 ( Z [ i ] ) \mathrm {SL}_3 (\mathbb {Z} [i] ) , and let f f be a Hecke cusp form for Γ 0 ( q ) ⊂ S L 2 ( Z [ i ] ) \Gamma _0 (q) \subset \mathrm {SL}_2 (\mathbb {Z} [i]) . Consider the twisted L L -functions L ( s , π ⊗ f ⊗ χ ) L (s, \pi \otimes f \otimes \chi ) and L ( s , π ⊗ χ ) L (s, \pi \otimes \chi ) on G L 3 × G L 2 \mathrm {GL}_3 \times \mathrm {GL}_2 and G L 3 \mathrm {GL}_3 . We prove the subconvexity bounds L ( 1 2 , π ⊗ f ⊗ χ ) ≪ ε , π , f N ( q ) 5 / 4 + ε , L ( 1 2 + i t , π ⊗ χ ) ≪ ε , π , t N ( q ) 5 / 8 + ε \begin{equation*} L \big (\tfrac 1 2, \pi \otimes f \otimes \chi \big ) \ll _{\, \varepsilon , \pi , f } \mathrm {N} (q)^{5/4 + \varepsilon }, \quad L \big (\tfrac 1 2 + it, \pi \otimes \chi \big ) \ll _{\, \varepsilon , \pi , t } \mathrm {N} (q)^{5/8 + \varepsilon } \end{equation*} for any ε > 0 \varepsilon > 0 .