LoRaWANs play a critical role in various applications such as smart farming, industrial IoT, and smart cities. The strategic placement of gateways significantly influences network performance optimization. This study presents a comprehensive analysis of the tradeoffs between system costs and bitrate maximization for selecting optimal gateway locations in LoRaWANs. To address this challenge, a rigorous mathematical model is formulated to incorporate essential factors and constraints related to gateway selection. Furthermore, we propose an innovative metaheuristic algorithm known as the M-VaNSAS algorithm, which effectively explores the solution space and identifies favorable gateway locations. The Pareto front and TOPSIS methods are employed to evaluate and rank the generated solutions, providing a robust assessment framework. Our research findings highlight the suitability of a network model comprising 144 gateways tailored for the Ubon Ratchathani province. Among the evaluated algorithms, the M-VaNSAS method demonstrates exceptional efficiency in gateway location selection, outperforming the PSO, DE, and GA methods.
Read full abstract