The production of waste textiles has increased rapidly in the past two decades along with the rapid development of the economy, the majority of which has been either landfilled or incinerated, resulting in energy loss and environmental pollution. Microwave pyrolysis, which can transform heterogeneous and complex waste feedstocks into value-added products, is considered one of the most competitive technologies for processing waste textiles. However, achieving selective product formation during the microwave pyrolysis of waste textiles remains a significant challenge. Herein, sodium acetate, potassium acetate, and nickel acetate were introduced into waste textiles through an impregnation method as raw materials to improve the pyrolysis efficiency. The optimized process parameters indicated that nickel acetate had the most favorable promotional effect of the three acetates. Notably, the waste textiles containing 1.0% Ni exhibited the highest gas production rate, with the hydrogen-containing combustible gas reaching 81.1% and 61.0%, respectively. Using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy to characterize the waste textiles before and after pyrolysis, it was found that nickel acetate was converted into metallic nickel (Ni0) during microwave pyrolysis. This active site significantly enhanced the pyrolysis process, and as the gas yield increased, the disorder of the resulting pyrolytic carbon also rose. The proposed Ni0-enhanced microwave pyrolysis mediated by nickel acetate offers a novel method for the efficient disposal and simultaneous resource recovery of waste textiles.
Read full abstract