AbstractSudden expansion pipes are crucial in fluid dynamics for studying flow behavior, turbulence, and pressure distribution in various systems. This study focuses on investigating the behavior of a two-phase flow, specifically a gas–solid turbulent flow, in a sudden expansion. The Eulerian–Eulerian approach is employed to model the flow characteristics. The Eulerian–Eulerian approach treats both phases (gas and solid) as separate continua, and their interactions are described using conservation equations for mass, momentum, and energy. The study aims to understand the complex phenomena occurring in the flow, such as particle dispersion, turbulence modulation, and pressure drop. The governing equations are solved using house developed code called FORTRAN, a widely used programming language in scientific and engineering simulations. The results of this study will provide valuable insights into the behavior of gas–solid two-phase flows in sudden expansions, which have important applications in various industries, including chemical engineering, energy systems, and environmental engineering. A parametric study of the impact of particles diameters (20, 120, 220, 500 µm), the solid volume loading ratios $$(0.005, 0.008, 0.01)$$ ( 0.005 , 0.008 , 0.01 ) and area ratios (2.25, 5.76, 9) effect of sudden expansion on the streamlines, local skin friction, pressure, velocity, turbulent kinetic energy, and separation zone.
Read full abstract