Liquid-liquid phase separation (LLPS) is ubiquitous in ambient aerosols. This specific morphology exerts substantial impacts on the physicochemical properties and atmospheric processes of aerosols, particularly on the gas-particle mass transfer, the interfacial heterogeneous reaction, and the surface albedo. Although there are many studies on the LLPS of aerosols, a clear picture of LLPS in individual aerosols is scarce due to the experimental difficulties of trapping a single particle and mimicking the suspended state of real aerosols. Here, we investigate the phase separation in individual contactless microdroplets by a self-constructed laser tweezer/Raman spectroscopy system. The dynamic transformation of the morphology of optically trapped droplets over the course of humidity cycles is detected by the time-resolved cavity-enhanced Raman spectra. The impacts of pH and inorganic components on LLPS in aerosols are discussed. The results show that the increasing acidity can enhance the miscibility between the hydrophilic and hydrophobic phases and decrease the separation relative humidity of aerosols. Moreover, the inorganic components also have various impacts on the aerosol phase state, whose influence depends on their different salting-out capabilities. It brings possible implications on the morphology of actual atmospheric particles, particularly for those dominated by internal mixtures of inorganic and organic components.