With new oil and gas lease sales in high-latitude regions, there exists a need to better understand the chemical fate of spilled oil and its effects on biological life. To address this need, laboratory simulations of crude oil spills under sub-Arctic conditions were conducted using artificial seawater and exposure to solar irradiation to create Hydrocarbon Oxidation Products (HOPs). HOPs characterization and their biological effects were assessed using ultra high-performance liquid chromatography (UHPLC) with high resolution mass Orbitrap spectrometry and the aryl hydrocarbon receptor (AhR) chemically activated luciferase gene expression (CALUX) assay. Non-target UHPLC-Orbitrap mass spectrometry analysis identified 251 HOPs that were in greater abundance in light-exposed samples than dark controls. Oxidized polycyclic aromatic hydrocarbons were also detected, including phenanthrene quinone, anthraquinone, hydroxyanthraquinone, and 9-fluoreneone. The composition of HOPs were consistent with photo-products of alkylated two to four ring PAHs, primarily compounds between 1 and 3 aromatic rings and 1–3 oxygens. The HOP mixture formed during photochemical weathering of Cook Inlet crude oil induced greater AhR activity than parent petroleum products solubilized in dark controls, indicating that HOPs, as a complex mixture, may contribute to petroleum toxicity more than the parent petroleum compounds. These non-targeted approaches provide the most comprehensive analysis of hydrocarbon oxidation products to date, highlighting the diversity of the complex mixture resulting from the photooxidation of crude oil and the limitations of targeted analyses for adequately monitoring HOPs in the environment. Taken together, these data identify a critical “blind spot” in environmental monitoring and spill clean-up strategies as there is a diverse pool of HOPs that may negatively impact human and ecosystem health.
Read full abstract