The ^{244}Pu(^{50}Ti,xn)^{294-x}Lv reaction was investigated at Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The experiment was aimed at the production of a superheavy element with Z≥114 by irradiating an actinide target with a beam heavier than ^{48}Ca. Produced Lv ions were separated from the unwanted beam and nuclear reaction products using the Berkeley Gas-filled Separator and implanted into a newly commissioned focal-plane detector system. Two decay chains were observed and assigned to the decay of ^{290}Lv. The production cross section was measured to be σ_{prod}=0.44(_{-0.28}^{+0.58}) pb at a center-of-target center-of-mass energy of 220(3)MeV. This represents the first published measurement of the production of a superheavy element near the "island of stability," with a beam of ^{50}Ti and is an essential precursor in the pursuit of searching for new elements beyond Z=118.
Read full abstract