PurposeThe placement of multi-strand sutures during flexor tendon repair is complex and challenging. We developed a new, simpler nine-strand suture, which we term the Tajima nines. The Tajima nines repair method is a new odd-numbered strand tendon technique. MethodsFourteen porcine flexor tendons were transected and repaired using the Tajima nines repair method, without placement of peripheral sutures. This technique is a modification of the Lim and Tsai repair method; it uses a 4-0 monofilament nylon, three-strand line, and two needles. The repaired tendons were tested for linear, noncyclic, load-to-failure tensile strength. The initial gap, 2-mm gap-formation force, and ultimate strength were measured. ResultsThe initial gap-formation force was 27.9 ± 7.5 newtons (N), the 2-mm gap-formation force was 39.2 ± 4.7 N, and the ultimate strength was 76.7 ± 17.2 N. Eight, three, and three of the fourteen tendons repaired using the Tajima nines method demonstrated failure because of thread breakage, knot failure, and suture pull-out, respectively. ConclusionsThis biomechanical study demonstrated that Tajima nines repair was associated with particularly high initial tension at the repair site; there were minor variations in the initial load and 2-mm gap-formation load. Our results suggest that Tajima nines repair with peripheral suturing allows the repaired flexor tendon to tolerate the stresses encountered during early active mobilization. Clinical RelevanceThis simple nine-strand technique will be particularly useful for inexperienced surgeons who perform early active mobilization after primary flexor tendon repair, because the technique is a modification of the Lim and Tsai repair method using a triple strand instead of a double strand.