BackgroundEpilepsy affects ∼60 million people worldwide. Most antiseizure medications in the market act on voltage-gated sodium or calcium channels, indirectly modulating neurotransmitter GABA or glutamate levels or multiple targets. Earlier studies made significant efforts to directly deliver GABA into the brain with varied success. Herein, we have hypothesized to directly deliver exogenous GABA to the brain with epilepsy through extracellular vesicles (EVs) from human GABA-producing cells and their progenitors as EVs largely mimic their parent cell composition.MethodsHuman neural stem cells (NSCs), medial ganglionic eminence (MGE) cells, and GABAergic interneurons (INs) were generated from induced pluripotent stem cells (iPSCs) and characterized. EVs were isolated from NSCs, MGE cells, and INs and characterized for size and distribution, morphological features, and molecular markers. Exogenous GABA was passively loaded to the isolated EVs as a zwitterion at physiological pH, and the encapsulated dose of GABA was quantified. Epilepsy was developed through status epilepticus induction in Fisher rats by administration of repeated low doses of kainic acid. The extent of the seizures was measured for 10 h/ day for 3–6 months by video recording and its evaluation for stage III, IV and V seizures as per Racine scale. EVs from INs, MGE cells, and NSCs encapsulated with exogenous GABA were sequentially tested in the 4th, 5th, and 6th months by intranasal administration in the rats with epilepsy for detailed seizure, behavioral and synapse analysis. In separate experiments, several controls including exogenic GABA alone and EVs from INs and MGE cells were evaluated for seizure-controlling ability.ResultsExogenic GABA could enter the brain through EVs. Treatment with EVs from INs and MGE cells encapsulated with GABA significantly reduced total seizures, stage V seizures, and total time spent in seizure activity. EVs from NSCs encapsulated with GABA demonstrated limited seizure control. Exogenic GABA alone and EVs from INs and MGE cells individually failed to control seizures. Further, exogenic GABA with EVs from MGE cells improved depressive behavior while partially improving memory functions. Co-localization studies confirmed exogenous GABA with presynaptic vesicles in the hippocampus, indicating the interaction of exogenous GABA in the brain with epilepsy.ConclusionFor the first time, the study demonstrated that exogenous GABA could be delivered to the brain through brain cell-derived EVs, which could regulate seizures in temporal lobe epilepsy. It is identified that the cellular origin of EVs plays a vital role in seizure control with exogenous GABA.
Read full abstract