AimsFibromyalgia (FM) is an idiopathic syndrome with painful burdensome symptoms. Radiotherapy is one of the main therapeutic modalities for treating various malignancies and there is a probable association between FM exacerbation and exposure to ionizing radiation. Based on that nanomedicines progressively being explored for their promising applications in medicine, the aim of the current study is to assess the possible therapeutic benefits of nanoform of pregabalin (N-PG) in managing FM symptoms during being exposed to ionizing radiation. Main methodsRats were allocated into four groups. First group served as control, the other three groups received gamma radiation (2 Gy/day) after 1 h of reserpine administration (1 ml/kg per day, s.c.) to induce FM for three successive days. On the next day, third and fourth groups received (30 mg/kg, p.o.) of PG and N-PG, respectively once daily for ten consecutive days. Tail flick test was performed and von Frey filaments were used to assess mechanical allodynia/hyperalgesia, and then rats were sacrificed to obtain brains. Key findingsN-PG effectively replenished reserpine effects and treated both allodynia and hyperalgesia, improved thermal allodynia, effectively recovered all neurotransmitters near to normal baseline, inhibited oxidative stress status via decreasing malondialdehyde (MDA), increasing glutathione (GSH) and superoxide dismutase (SOD), it had strong anti-inflammatory effect as verified by reducing both cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-kB) in addition to inhibition of intrinsic apoptosis through caspase-3 (casp-3) decrease and B-cell lymphoma-2 (Bcl-2) increase. Histopathological and immunohistochemical results confirmed the biochemical findings. SignificanceN-PG could be a promising drug for treating FM especially when there is urgent need to expose patient to ionizing radiation.
Read full abstract