A theory of anisotropic galvanomagnetic effects in single cubic crystals and its experimental verifications are presented for the current in the (001) plane. In contrast to the general belief that galvanomagnetic effects in single crystals are highly sensitive to many internal and external effects and have no universal features, the theory predicts universal angular dependencies of longitudinal and transverse resistivity and various characteristics when magnetization rotates in the (001) plane, the plane perpendicular to the current, and the plane containing the current and [001] direction. The universal angular dependencies are verified by experiments on Fe_{30}Co_{70} single cubic crystal film. The findings provide new avenues for fundamental research and applications of galvanomagnetic effects, because single crystals offer advantages over polycrystalline materials for band structure and crystallographic orientation engineering.
Read full abstract