As a pest, the gall wasp Ophelimus migdanorum poses a risk to several Eucalyptus species in Colombia. In the tropical Andes, its biological development and the damage it causes can be influenced by climate, particularly rainfall. In this regard, we examined gall phenology, population fluctuation, and leaf damage caused by O. migdanorum, and its parasitoid Closterocerus chamaeleon, over 5months at two sites with contrasting rainfall in peri-urban areas of Bogotá, Colombia. Gall phenology and foliar damage were assessed on 10 trees per site. We characterized gall phenology by assessing their size and color, wasps' developmental stages, as well as affected leaf area and gall density on the leaf blade. Additionally, the individuals found in five attraction traps at each site were quantified biweekly to record population fluctuations. The effect of rainfall on wasp frequency and gall density between sampling sites and dates was compared using the chi-square test, while the relationship with rainfall was evaluated using the Kruskal-Wallis test. Only females of the gall wasp and its parasitoid were observed during the study, displaying multivoltine behavior. Six developmental stages of the galls were differentiated, each characterized by distinct coloration. Drier microclimates favored gall size, wasps' development stage frequency, population trend, and foliar damage. The general trend indicated a greater abundance of the parasitoid C. chamaeleon compared to O. migdanorum. Our study suggests that O. migdanorum has a less damaging effect on E. globulus in areas with rainy microclimates.
Read full abstract