Abstract The morphology and structure of galaxies reflect their star formation and assembly histories. We use the framework of mutual information (MI) to quantify the interdependence among several structural variables and to rank them according to their relevance for predicting the specific star formation rate (SSFR) by comparing the MI of the predictor variables with the SSFR and penalizing variables that are redundant. We apply this framework to study ∼3700 face-on star-forming galaxies (SFGs) with varying degrees of bulge dominance and central concentration and with stellar mass M ⋆ ≈ 109 M ⊙−5 × 1011 M ⊙ at redshift z = 0.02–0.12. We use the Sloan Digital Sky Survey (SDSS) Stripe 82 deep i-band imaging data, which improve measurements of asymmetry and bulge dominance indicators. We find that star-forming galaxies are a multiparameter family. In addition to M ⋆, asymmetry emerges as the most powerful predictor of SSFR residuals of SFGs, followed by bulge prominence/concentration. Star-forming galaxies with higher asymmetry and stronger bulges have higher SSFR at a given M ⋆. The asymmetry reflects both irregular spiral arms and lopsidedness in seemingly isolated SFGs and structural perturbations by galaxy interactions or mergers.
Read full abstract