A novel photoreceptor dualchrome 1 (DUC1), containing a fused structure of cryptochrome and phytochrome, was discovered in the marine green alga Pycnococcus provasolli. The DUC1 phytochrome region (PpDUC1-N) binds to the bilin (linear tetrapyrrole) chromophores, phytochromobilin (PΦB) or phycocyanobilin (PCB), and reversibly photoconverts between the orange-absorbing dark-adapted state and the far-red-absorbing photoproduct state. This contrasts with typical phytochromes, which photoconvert between the red-absorbing dark-adapted and far-red-absorbing photoproduct states. In this study, we examined the molecular mechanism of PpDUC1-N to sense orange light by identifying the chromophore species synthesized by P. provasolli and the amino acid residues within the PpDUC1-N responsible for sensing orange light in the dark-adapted state. We focused on the PcyA homolog of P. provasolli (PpPcyA). Coexpression with the photoreceptors followed by an enzymatic assay revealed that PpPcyA synthesized PCB. Next, we focused on the PpDUC1-N GAF domain responsible for chromophore binding and light sensing. Ten amino acid residues were selected as the mutagenesis target near the chromophore. Replacement of these residues with those conserved in typical phytochromes revealed that three mutations (F290Y/M304S/L353M) resulted in a 23-nm red-shift in the dark-adapted state. Finally, we combined these constructs to obtain the PΦB-binding F290Y/M304S/L353M mutant and a 38-nm red-shift was observed compared with the PCB-binding wild-type PpDUC1. The binding chromophore species and the key residues near the chromophore contribute to blue-shifted orange light sensing in the dark-adapted state of the PpDUC1-N.
Read full abstract