Disialoganglioside (GD2) is one of the most popular overexpressed antigens for tumor cell targeting. However, GD2-specific antibodies often show unintended targeting to GD2-expressing health-maintaining cells due to the comparable binding affinities both at physiological pH and in a slightly acidic tumor microenvironment (TME). In this work, an affinity-switchable zwitterionic PAMAM G5 dendrimer (G5-3S) is developed for selective binding to GD2 only in a slightly acidic TME. It has 3 sulfonic groups, 128 carboxylic groups, and 125 amino groups on the surface. This affinity switch is realized by multiple hydrogen bond (H-bond) formation between protonated carboxylic groups surrounding a sulfonic group and overexpressed GD2 clusters on the tumor cell membrane in the slightly acidic TME, whereas there is no stable H-bond formation at physiological pH. Thus, G5-3S shows superior selectivity to GD2-overexpressed tumor cells over anti-GD2 antibodies by avoiding targeting GD2-expressing health-maintaining cells at physiological pH. This suggests that G5-3S is a promising candidate for GD2-overexpressed cancer treatment.