The increased demand of Wireless Sensor Networks (WSNs) in different areas of application have intensified studies dedicated to the deployment of sensor nodes in recent past. For deployment of sensor nodes some of the key objectives that need to be satisfied are coverage of the area to be monitored, net energy consumed by the WSN, lifetime of the network, and connectivity and number of deployed sensors. In this article the sensor node deployment task has been formulated as a constrained multi-objective optimization (MO) problem where the aim is to find a deployed sensor node arrangement to maximize the area of coverage, minimize the net energy consumption, maximize the network lifetime, and minimize the number of deployed sensor nodes while maintaining connectivity between each sensor node and the sink node for proper data transmission. We assume a tree structure between the deployed nodes and the sink node for data transmission. Our method employs a recently developed and very competitive multi-objective evolutionary algorithm (MOEA) known as MOEA/D-DE that uses a decomposition approach for converting the problem of approximation of the Pareto fronts (PF) into a number of single-objective optimization problems. This algorithm employs differential evolution (DE), one of the most powerful real parameter optimizers in current use, as its search method. The original MOEA/D has been modified by introducing a new fuzzy dominance based decomposition technique. The algorithm introduces a fuzzy Pareto dominance concept to compare two solutions and uses the scalar decomposition method only when one of the solutions fails to dominate the other in terms of a fuzzy dominance level. We have compared the performance of the resulting algorithm, called MOEA/DFD, with the original MOEA/D-DE and another very popular MOEA called Non-dominated Sorting Genetic Algorithm (NSGA-II). The best trade-off solutions from MOEA/DFD based node deployment scheme have also been compared with a few single-objective node deployment schemes based on the original DE, an adaptive DE-variant (JADE), original particle swarm optimization (PSO), and a state-of-the art variant of PSO (Comprehensive Learning PSO). In all the test instances, MOEA/DFD performs better than all other algorithms. Also the proposed multi-objective formulation of the problem adds more flexibility to the decision maker for choosing the necessary threshold of the objectives to be satisfied.
Read full abstract