The application of neural network model in intelligent diagnosis usually encounters challenges such as continuous adjustment of network parameters and significant cost in training the network facing numerous complex physiological data. To address this challenge, this paper introduces a fuzzy SZGWO-ELM neural network model for medical disease aid diagnosis with fuzzy membership function and ELM network to refine the improved Gray Wolf optimization algorithm. Firstly, the Z-type membership function is introduced as the inertia weight to get a balance for the grey wolf in seeking the optimal solution globally and locally and ensuring fast convergence. Secondly, the S-type membership function is utilized as the adaptive weight to flexibly adjust the grey wolf search step size to facilitate a quick approximation of the optimal solution. Finally, the improved Gray Wolf optimization algorithm is used to optimize the parameters of the ELM neural network model, termed as SZGWO-ELM. This method can eliminate the need for extensive network parameter adjustments and quickly locate the optimal solution to the problem using a lightweight neural network. The performance of the SZGWO is assessed by using metrics like convergence, mean, and standard deviation. Multiple experiments reveal that this method shows superior performance. Furthermore, five publicly accessible medical disease datasets from UCI were conducted to evaluate the performance of SZGWO-ELM network model comparing with different classify model, and the results in terms of precision, sensitivity, specificity and accuracy can achieve 99.52%, 94.14%, 99.26% and 96.08%, respectively, which illustrate that the proposed SZGWO-ELM neural network significantly enhance the model's accuracy, providing better support for doctors in disease diagnosis.
Read full abstract