Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.
Read full abstract