We proposed an additively manufactured equiatomic CoNiV multicomponent alloy (MCA) using a conventional laser powder bed fusion (LPBF) method, and an exceptional strength-ductility synergy of the alloy was attained through a simple post-ageing treatment. Pronounced hierarchical microstructures were achieved in our printed alloys, including heterogeneous grain structures, and intragranular cellular structures composed of interior domain with limited dislocations and cell walls led by significant vanadium local segregation. Besides the outstanding mechanical properties at room temperature of 298 K, a giga-pascal yielding strength (> 1.1 GP) and over 40% uniform elongation were attained in the aged specimen deformed at a cryogenic temperature of 77 K, predominating the mechanical properties of many alloys reported in previous works. Such exceptional performance of the aged alloy can be mainly ascribed to considerable local chemical orders (LCOs), aggravated elemental fluctuation in the alloy matrix, and intensified vanadium segregation at walls of intragranular cellular structures which can strongly interact with dislocations. As a result, a planar slip array of dislocations with an extremely high density, namely large numbers of slip bands that can sustain and transfer high strains, dominates the deformation microstructures, thus efficiently strengthening and toughening the aged alloy, especially at a low temperature like 77 K. The above post-ageing strategy is readily and low-costly employed on additively manufactured MCAs with relatively high stacking fault energy (SFE) and proved as a feasible method to produce high-performance structural materials for extreme conditions.