Financial and environmental considerations continue to encourage aircraft manufacturers to consider alternate forms of aircraft propulsion. On the financial end, it is the continued rise in aviation fuel prices, as a result of an increasing demand for air travel, and the depletion of fossil fuel resources; on the environmental end, it is concerns related to air pollution and global warming. New aircraft designs are being proposed using electrical and hybrid propulsion systems, as a way of tackling both the financial and environmental challenges associated with the continued use of fossil fuels. While battery capabilities are evolving rapidly, the current state-of-the-art offers an energy density of ~ 250 Wh/kg. This is sufficient for small, general aviation electric airplanes, with a modest range no more than 200 km. This paper explores the possibility of a medium range (750 km) electric, four-seat, FAR-23 certifiable general aviation aircraft, assuming an energy density of 1500 Wh/kg, projected to be available in 2025. It presents the conceptual and preliminary design of such an aircraft, which includes weight and performance sizing, fuselage design, wing and high-lift system design, empennage design, landing gear design, weight and balance, stability and control analysis, drag polar estimation, environmental impact and final specifications. The results indicate that such an aircraft is indeed feasible, promising greener general aviation fleets around the world. Keywords: general aviation aircraft, electric aircraft, aircraft design